Non-Parametric Group-Level Statistics for Source-Resolved ERP Analysis

August 1, 2015
Arnaud Delorme, PhD

Lee C, Miyakoshi M, Delorme A, Cauwenberghs G, Makeig S. (2015) Non-parametric group-level statistics for source-resolved ERP analysis. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:7450-3. doi: 10.1109/EMBC.2015.7320114.


We have developed a new statistical framework for group-level event-related potential (ERP) analysis in EEGLAB. The framework calculates the variance of scalp channel signals accounted for by the activity of homogeneous clusters of sources found by independent component analysis (ICA). When ICA data decomposition is performed on each subject’s data separately, functionally equivalent ICs can be grouped into EEGLAB clusters. Here, we report a new addition (statPvaf) to the EEGLAB plug-in std_envtopo to enable inferential statistics on main effects and interactions in event related potentials (ERPs) of independent component (IC) processes at the group level. We demonstrate the use of the updated plug-in on simulated and actual EEG data.

Read the Paper

Join Our Global Community

Receive curated mind-bending, heart-enlivening content. We’ll never share your email address and you can unsubscribe any time.

Back to Top