Frontal Midline EEG Dynamics During Working Memory

September 1, 2005
Arnaud Delorme, PhD

Onton, Julie & Delorme, Arnaud & Makeig, Scott. (2005). Frontal midline EEG dynamics during working memory. NeuroImage. 27. 341-56. 10.1016/j.neuroimage.2005.04.014.


We show that during visual working memory, the electroencephalographic (EEG) process producing 5-7 Hz frontal midline theta (fmtheta) activity exhibits multiple spectral modes involving at least three frequency bands and a wide range of amplitudes. The process accounting for the fmtheta increase during working memory was separated from 71-channel data by clustering on time/frequency transforms of components returned by independent component analysis (ICA). Dipole models of fmtheta component scalp maps were consistent with their generation in or near dorsal anterior cingulate cortex. From trial to trial, theta power of fmtheta components varied widely but correlated moderately with theta power in other frontal and left temporal processes. The weak mean increase in frontal midline theta power with increasing memory load, produced entirely by the fmtheta components, largely reflected progressively stronger theta activity in a relatively small proportion of trials. During presentations of letter series to be memorized or ignored, fmtheta components also exhibited 12-15 Hz low-beta activity that was stronger during memorized than during ignored letter trials, independent of letter duration. The same components produced a brief 3-Hz burst 500 ms after onset of the Probe letter following each letter sequence. A new decomposition method, log spectral ICA, applied to normalized log time/frequency transforms of fmtheta component Memorize-letter trials, showed that their low-beta activity reflected harmonic energy in continuous, sharp-peaked theta wave trains as well as independent low-beta bursts. Possibly, the observed fmtheta process variability may index dynamic adjustments in medial frontal cortex to trial-specific behavioral context and task demands.

Read the Paper

Join Our Global Community

Receive curated mind-bending, heart-enlivening content. We’ll never share your email address and you can unsubscribe any time.

Back to Top